Exercise 14

Evaluate the limit and justify each step by indicating the appropriate properties of limits.

$$
\lim _{x \rightarrow \infty} \sqrt{\frac{9 x^{3}+8 x-4}{3-5 x+x^{3}}}
$$

Solution

Use the root law.

$$
\lim _{x \rightarrow \infty} \sqrt{\frac{9 x^{3}+8 x-4}{3-5 x+x^{3}}}=\sqrt{\lim _{x \rightarrow \infty} \frac{9 x^{3}+8 x-4}{3-5 x+x^{3}}}
$$

Multiply the numerator and denominator by the reciprocal of the highest power of x in the denominator.

$$
\lim _{x \rightarrow \infty} \sqrt{\frac{9 x^{3}+8 x-4}{3-5 x+x^{3}}}=\sqrt{\lim _{x \rightarrow \infty} \frac{9 x^{3}+8 x-4}{3-5 x+x^{3}} \cdot \frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}}}
$$

Multiply the fractions together.

$$
\lim _{x \rightarrow \infty} \sqrt{\frac{9 x^{3}+8 x-4}{3-5 x+x^{3}}}=\sqrt{\lim _{x \rightarrow \infty} \frac{\left(9 x^{3}+8 x-4\right) \frac{1}{x^{3}}}{\left(3-5 x+x^{3}\right) \frac{1}{x^{3}}}}
$$

Use the distributive property.

$$
\lim _{x \rightarrow \infty} \sqrt{\frac{9 x^{3}+8 x-4}{3-5 x+x^{3}}}=\sqrt{\lim _{x \rightarrow \infty} \frac{9+\frac{8}{x^{2}}-\frac{4}{x^{3}}}{\frac{3}{x^{3}}-\frac{5}{x^{2}}+1}}
$$

The limit of a quotient is the quotient of the limits.

$$
\lim _{x \rightarrow \infty} \sqrt{\frac{9 x^{3}+8 x-4}{3-5 x+x^{3}}}=\sqrt{\frac{\lim _{x \rightarrow \infty}\left(9+\frac{8}{x^{2}}-\frac{4}{x^{3}}\right)}{\lim _{x \rightarrow \infty}\left(\frac{3}{x^{3}}-\frac{5}{x^{2}}+1\right)}}
$$

The limit of a sum (difference) is the sum (difference) of the limits.

$$
\lim _{x \rightarrow \infty} \sqrt{\frac{9 x^{3}+8 x-4}{3-5 x+x^{3}}}=\sqrt{\frac{\lim _{x \rightarrow \infty} 9+\lim _{x \rightarrow \infty} \frac{8}{x^{2}}-\lim _{x \rightarrow \infty} \frac{4}{x^{3}}}{\lim _{x \rightarrow \infty} \frac{3}{x^{3}}-\lim _{x \rightarrow \infty} \frac{5}{x^{2}}+\lim _{x \rightarrow \infty} 1}}
$$

Evaluate all the limits.

$$
\lim _{x \rightarrow \infty} \sqrt{\frac{9 x^{3}+8 x-4}{3-5 x+x^{3}}}=\sqrt{\frac{9+0-0}{0-0+1}}
$$

Simplify the result.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{2 x^{2}-7}{5 x^{2}+x-3}=\sqrt{9} \\
& \lim _{x \rightarrow \infty} \frac{2 x^{2}-7}{5 x^{2}+x-3}=3
\end{aligned}
$$

